Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans.
نویسندگان
چکیده
Bacteria and fungi are thought to degrade cellulose through the activity of either a complexed or a noncomplexed cellulolytic system composed of endoglucanases and cellobiohydrolases. The marine bacterium Saccharophagus degradans 2-40 produces a multicomponent cellulolytic system that is unusual in its abundance of GH5-containing endoglucanases. Secreted enzymes of this bacterium release high levels of cellobiose from cellulosic materials. Through cloning and purification, the predicted biochemical activities of the one annotated cellobiohydrolase Cel6A and the GH5-containing endoglucanases were evaluated. Cel6A was shown to be a classic endoglucanase, but Cel5H showed significantly higher activity on several types of cellulose, was the highest expressed, and processively released cellobiose from cellulosic substrates. Cel5G, Cel5H, and Cel5J were found to be members of a separate phylogenetic clade and were all shown to be processive. The processive endoglucanases are functionally equivalent to the endoglucanases and cellobiohydrolases required for other cellulolytic systems, thus providing a cellobiohydrolase-independent mechanism for this bacterium to convert cellulose to glucose.
منابع مشابه
Global metabolic profiling of plant cell wall polysaccharide degradation by Saccharophagus degradans.
Plant cell wall polysaccharides can be used as the main feedstock for the production of biofuels. Saccharophagus degradans 2-40 is considered to be a potent system for the production of sugars from plant biomass due to its high capability to degrade many complex polysaccharides. To understand the degradation metabolism of plant cell wall polysaccharides by S. degradans, the cell growth, enzyme ...
متن کاملGlobal metabolite profiling of agarose degradation by Saccharophagus degradans 2-40.
Saccharophagus degradans is a potent degrader of marine and plant cell wall polysaccharides. In particular, it is capable of degrading and metabolizing agarose that is the main component of marine red algae. To understand its degradation and metabolism of agarose along with the agarase expression profile, S. degradans was grown using different carbon sources including galactose, agarose, glucos...
متن کاملCadherin domains in the polysaccharide-degrading marine bacterium Saccharophagus degradans 2-40 are carbohydrate-binding modules.
The complex polysaccharide-degrading marine bacterium Saccharophagus degradans strain 2-40 produces putative proteins that contain numerous cadherin and cadherin-like domains involved in intercellular contact interactions. The current study reveals that both domain types exhibit reversible calcium-dependent binding to different complex polysaccharides which serve as growth substrates for the ba...
متن کاملThe Complete Genome of Teredinibacter turnerae T7901: An Intracellular Endosymbiont of Marine Wood-Boring Bivalves (Shipworms)
Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitr...
متن کاملDiscovery and characterization of cadherin domains in Saccharophagus degradans 2-40.
Saccharophagus degradans strain 2-40 is a prominent member of newly discovered group of marine and estuarine bacteria that recycle complex polysaccharides. The S. degradans 2-40 genome codes for 15 extraordinary long polypeptides, ranging from 274 to 1,600 kDa. Five of these contain at least 52 cadherin (CA) and cadherin-like (CADG) domains, the types of which were reported to bind calcium ions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 191 18 شماره
صفحات -
تاریخ انتشار 2009